184

Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3

Munns, R., & Gilliham, M., (2015). Salinity tolerance of crops–what is the cost? New Phytol.,

3, 668–673.

Narendran, M., Deole, S. G., Harkude, S., Shirale, D., Nanote, A., Bihani, P., Parimi, S., et

al., (2013). Efficient genetic transformation of okra (Abelmoschus esculentus (L.) Moench)

and generation of insect-resistant transgenic plants expressing the cry1Ac gene. Plant Cell

Rep., 32, 1191–1198.

Negrão, S., Schmöckel, S. M., & Tester, M., (2017). Evaluating physiological responses of

plants to salinity stress. Ann. Bot., 119(1), 1–11.

Orellana, S., Yanez, M., Espinoza, A., Verdugo, I., Gonzalez, E., Ruiz-Lara, S., & Casaretto,

J. A., (2010). The transcription factor SlAREB1 confers drought, salt stress tolerance and

regulates biotic and abiotic stress-related genes in tomato. Plant, Cell and Environment,

33, 2191–2208.

Parmar, N., Singh, K. H., Sharma, D., Singh, L., Kumar, P., Nanjundan, J., Khan, Y. J.,

Chauhan, D. K., & Thakur, A. K., (2017). Genetic engineering strategies for biotic and

abiotic stress tolerance and quality enhancement in horticultural crops: A comprehensive

review. 3Biotech, 7(4), 239.

Rani, R., Yadav, P., Barbadikar, K. M., Baliyan, N., Malhotra, E. V., Singh, B. K., Kumar, A.,

& Singh, D., (2016). CRISPR/Cas9: A promising way to exploit genetic variation in plants.

Biotechnol. Lett., 38(12), 1991–2006.

Roychowdhury, R., & Tah, J., (2013). Mutagenesis – a potential approach for crop

improvement. In: Hakeem, K. R., Ahmad, P., & Ozturk, M., (eds.), Crop Improvement –

New Approaches and Modern Techniques (pp. 149–187). Springer, Boston.

Roychowdhury, R., (2014). Crop Improvement in the Era of Climate Change (p. 496). IK

International Publishing House, New Delhi.

Roychowdhury, R., Karmakar, J., Karmakar, J., Adak, M. K., & Dey, N., (2013). Physio-

biochemical and microsatellite-based profiling of lowland rice (Oryza sativa L.) landraces

for osmotic stress tolerance. Am. J. Plant Sci., 4(12), 52.

Roychowdhury, R., Khan, M. H., & Choudhury, S., (2018). Arsenic in rice: An overview on

stress implications, tolerance and mitigation strategies. In: Hasanuzzaman, M., Nahar, K.,

& Fujita, M., (eds.), Plants Under Metal and Metalloid Stress (pp. 401–415). Springer,

Singapore.

Roychowdhury, R., Khan, M. H., & Choudhury, S., (2019). Physiological and molecular

responses for metalloid stress in rice - a comprehensive overview. In: Hasanuzzaman, M.,

Fujita, M., Nahar, K., & Biswas, J., (eds.), Advances in Rice Research for Abiotic Stress

Tolerance (pp. 341–369). Woodhead Publishing/ Elsevier, London.

Roychowdhury, R., Taoutaou, A., Hakeem, K. R., Gawwad, M. R., & Tah, J., (2014).

Molecular marker- assisted technologies for crop improvement. In: Roychowdhury, R.,

(ed.), Crop Improvement in the Era of Climate Change (pp. 241–258). IK International

Publishing House, New Delhi.

Sadiq, M., & Akram, N. A., (2018). Field performance of transgenic drought-tolerant crop

plants. In: Biochemical, Physiological and Molecular Avenues for Combating Abiotic

Stress Tolerance in Plants (pp. 83–102).

Sharma, R., Sudan, R. S., Kumari, S., Salgotra, R. K., & Singh, R., (2017). Research article

terminal heat stress-responsive genes analysis in heat susceptible HDR77 genotype of

wheat (Triticum aestivum L.) by using semi-quantitative RTPCR. Electron J. Plant Breed.,

8(4), 1124–1132.